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Abstract of the Thesis

Sensor Placement in Linear Fields:

Estimation and Discrimination

by

Mohamed Nabil Hassan Hajjchehade

Master of Science in Electrical Engineering

University of California, Los Angeles, 2007

Professor Gregory J. Pottie, Chair

Many applications in sensor networks require the estimation of spatial environ-

mental phenomena. Finding strategies for sensor placement and data collection

to optimize the estimation is a fundamental task for these applications. In this

thesis we present two optimization formulations for obtaining good strategies.

The first formulation considers the estimation of a spatial field of known model

structure using D − optimal design and is based on minimizing the estimation

error. This formulation is extended to estimating multiple fields with different

model structures simultaneously. The locations for this formulation are found

before collecting any data. The second formulation considers discriminating be-

tween multiple competing model structures for the field using T −optimal designs

introduced in [1]. This formulation is based on minimizing the probability of er-

ror in selecting the correct model. The locations for this formulation are found

in a sequential algorithm that provides a strategy for sensor placement and data

collection. We focus on linear fields, and we provide simulations that describe

these solutions and show their benefits.
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CHAPTER 1

Introduction

Wireless sensing systems are very useful for applications in which we need to learn

about natural phenomena (e.g. temperature, humidity, light, etc.) over spatial

and temporal fields. Statistical models are widely used to make sense of the

collected data and to answer questions regarding these phenomena such as pre-

diction of the phenomena changes over time or space, effects of some phenomena

on other phenomena, or any sort of inference.

One can randomly place sensors, collect measurements and make inferences

about the phenomena in question. This work instead focuses on the problem

of directing the initial placement of sensors and the collection of measurements,

depending on the application and the desired final inferences. We are interested

in many aspects of the sensor placement problem. The use or choice of certain

statistical models, combined with the desired inferences, leads us to formulate

methods or techniques which direct sensor placement for high quality inference

results. The methods presented are optimization methods where the resulting

placement is optimal in achieving the desired inference. In this thesis we focus

on spatial data, linear regression models to represent these data and inferences

based on the regression models. We also present some generalizations that lead

to the Gaussian process model and the corresponding sensor placement methods.

Justifying the use of certain statistical models is an important open problem,

but it is beyond the scope and the goal of this thesis. Nonetheless we stress the
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relationship between commonly used statistical models. We refer to a model as

a characterization of how unknown quantities (phenomena) are related to known

quantities (measurement locations). Two characterizations are widely used: a

function where the phenomena are a function of the locations and a probability

distribution of the phenomena given the locations. Linear regression belongs to

the first type while Gaussian processes fall in the second one. Throughout the

analysis in this thesis, we focus on spatial field and we assume that the field does

not change rapidly over time. We intend to study and understand the design of

sensor placement to optimize the modeling of the spatial field. In future work, we

plan to incorporate temporal changes of the field in the design of the placement

and the modeling of the spatiotemporal field. We restrict the analysis as well to

static nodes.

After describing the notation used in this thesis, we review in Section 1.2 the

two frameworks and elaborate on the relationship between them.

The contributions of this thesis are as follows. In Chapter 3, we present the

problem of finding sensor placement in order to minimize the error in estimating

a linear spatial field using optimal experimental design techniques. We focus

on D − optimal design, and we show that it minimizes the entropy of the field

given the measurements. We show as well the connection between the Gaussian

process framework, used in [4], and the regression framework. We describe three

optimization approaches for placing sensors to estimate multiple fields simulta-

neously. These three approaches can also be used to find placements for robust

model estimation when there is uncertainty in the model describing the field.

In Chapter 4, we describe a strategy to place sensors and collect data to select

a model for the field from a set of models. This strategy ensures a minimum

probability of error in the model selection.
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1.1 Notation

1.1.1 Variables

Throughout the thesis we use four types of variables: scalar, vector, matrix and

random. We employ the following notation: lower case for both scalars and

vectors, upper case for matrices and bold for random variables. For example x

is a random variable, scalar or vector, and x is a realization of x. Similarly, X

is a matrix with random entries while X is a realization.

1.1.2 Means and Covariance Matrices

We use µx to denote the mean of a random variable x. The index refers to the

random variable. We use the upper case letter Cx to denote a covariance matrix

for a random variable x. Similarly Cxy is the joint covariance matrix of x and

y i.e.

Cy = E
[

(x − µx)(y − µy)T
]

(1.1)

and Cx|y is the covariance matrix of x given y = y i.e.

Cx|y = E
[

(x − µx)(x − µx)T |y = y
]

(1.2)

1.1.3 Probability Density Functions

We use fx(x) to denote the probability density function (PDF) of the random

variable x. Similarly fxy(x, y) denotes the joint PDF of x and y and fx|y(x|y)

is the PDF of x given y = y.

For Gaussian random variables, we use the familiar notation

x ∼ N (µx, Cx) (1.3)
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to mean that x is a Gaussian random variable with mean µx and covariance

matrix Cx.

1.2 Statistical Models

There is a connection between the Gaussian process framework and linear re-

gression in Gaussian noise framework. Both formulations have been extensively

studied and widely used to represent data. This connection results from the

relationship between the least squares criterion and Maximum Likelihood (ML)

estimation under normal errors model. We think that understanding the connec-

tion is important for the problem of sensor placement, since it relates different

approaches used to solve this problem. In Section 1.2.1 we review the linear

regression framework under Gaussian noise. In Section 1.2.2 we review the Gaus-

sian processes framework.

1.2.1 The Regression Framework

Consider the 1-dimensional polynomial regression framework where a polynomial

model is used to fit the data and make inferences:

yi = a0 + a1xi + · · ·+ anxn
i + ei, i = 1, . . . , m (1.4)

where xi is the measurement location i, ei is measurement noise at the mea-

surement location i and ai are unknown parameters. Letting T represent the

transpose operator, we can rewrite (1.4) in vector form

yi = aT vi + ei, i = 1, . . . , m (1.5)

where a = [ a0 a1 . . . an ]T and vi = [ 1 xi . . . xn
i

]T . We assume that

v1, . . . , vm span R
n+1. Furthermore if we collect yi in an m-dimensional vector
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called, y we get:

y = XT a + e, (1.6)

where X is the matrix whose columns are the vi vectors. X is called the design

matrix. We assume that e ∼ N (0, Ce).

The maximum likelihood estimate of a is found by:

max
a

fy(y|a) (1.7)

where fy(y|a) is the density function of y parameterized by a. In this Gaussian

setup, fy(y|a) is a parameterized Gaussian density function of the form

fy(y|a) =
1

(2π)n/2|Cy|1/2
exp

(

−1

2
(y − µ)TC−1

y (y − µ)

)

(1.8)

where µ = XT a and Cy = Ce.

The ML problem (1.7) can be solved by solving the following least-squares

problem

min
a

‖(y − XT a)T C−1
e (y − XTa)‖2

2 (1.9)

The solution is given by:

â =
(
∑m

i=1 viC
−1
e vT

i

)−1∑m
i=1 viC

−1
e yi

= (XC−1
e XT )−1XC−1

e y

(1.10)

The resulting estimation error, ã = â − a, is a Gaussian vector with mean zero

and covariance matrix

Cã =
(
∑m

i=1 viC
−1
e vT

i

)−1

= (XC−1
e XT )−1

(1.11)
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In the discussion above, we assumed implicitly that the regression parameters are

modeled as a deterministic vector a i.e. unknown constants. Now we consider

the case when we model these regression parameters as a random vector a ∼
N (µa, Ca). The regression equation becomes

y = XT a + e (1.12)

and y ∼ N (XTµa, XT CaX + Ce).

In this case the maximum likelihood estimation of a given a realization (or

measurements) y of y is given by maximizing the joint distribution of a and y

when y is equal to the measurement y:

max
a

fy,a(y, a) (1.13)

Using Bayes’ theorem, fy,a(y, a) = fa|y(a|y)ḟy(y), we see that solving (1.13)

is equivalent to solving what is known as the Maximum A Posteriori (MAP)

problem

max
a

fa|y(a|y) = 1
(2π)n/2 |Ca|y |1/2

exp
(

−1
2
(a − µa|y)T C−1

a|y(a − µa|y)
)

(1.14)

where [6]

µa|y = µa + CayCy−1(y − µy)

= 1 µa + CaX(XT CaX + Ce)−1(y − XT µa)

= 2 µa + (C−1
a + XC−1

e XT )−1XC−1
e (y − XT µa)

(1.15)

and

Ca|y = Ca − CayC−1
y Cya

= 1 Ca − CaX(XTCaX + Ce)−1XT Ca

= 2 (C−1
a + XC−1

e XT )−1

(1.16)

1
Cay = C

T

ya = CaX and Cy = X
T
CaX + Ce.

2Using the Sherman–Morrison–Woodbury formula.

6



Since fa|y(a|y) is a Gaussian distribution, the solution, â, of (1.14) is given by

µa|y. The estimation error, ã = a− â, is a Gaussian random variable with mean

zero and covariance matrix Cã = Ca|y.

For the sake of completeness, we would like to add that the MAP problem,

(1.14), is equivalent to the Minimum Mean Square Error (MMSE) problem

min
a

E(ããT ) (1.17)

where the MMSE is equal to Ca|y given in (1.16), and is achieved by µa|y given

in (1.15).

In this section we presented two views of the regression framework, the deter-

ministic view where we consider the regression parameter as an unknown constant

a and the random view where we consider the regression parameter as a random

variable a. In both views, the goal is to estimate the regression parameter by â

in order to estimate the phenomena by XT â. Next we relate the two views and

then in Section 1.2.2 we relate the Gaussian process framework to the regression

framework with random parameters.

Examining the equations of the random view (1.15) and (1.16), we can loosely

argue that if we assume that µa = 0 and let Ca go to ′∞′ then C−1
a would loosely

go to ′zero′ and we will get the following limits

µa|y −→ (XC−1
e XT )−1XC−1

e y

Ca|y −→ (XC−1
e XT )−1

(1.18)

which coincide with the equations of the deterministic view (1.10) and (1.11)

respectively. In other words, increasing Ca corresponds to making the distribu-

tion of a wider and to increasing the uncertainty in a. So letting Ca go to ′∞′

makes the Gaussian distribution flat and a an unknown constant a. We can also

interpret this relationship from the Bayesian perspective; modeling the regression
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parameter as a random variable a is a way of incorporating our prior information

(or beliefs) about this parameter.

1.2.2 The Gaussian Process Framework

In this section we review the Gaussian process framework in modeling spatial

fields (or phenomena). In this framework a Gaussian random variable is associ-

ated with the phenomenon at each location and for any set of locations a Gaussian

random vector is used to model the phenomenon. The measurement vector will

be modeled as follows

y = g + e (1.19)

with g ∼ N (µg, Cg) and e ∼ N (0, Ce).

The measurement vector y is a Gaussian random vector with mean µg and

covariance Cg +Ce. Now in this framework, the maximum likelihood estimation

of the phenomenon g is given by maximizing the joint distribution of g and y

when y is equal to its realization y

max
g

fy,g(y, g) (1.20)

In a similar manner as in the regression framework, (1.20) is equivalent to

max
g

fg|y(g|y) (1.21)

where fg|y(g|y) is a Gaussian distribution with mean [6]
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µg|y = µg + CgyC−1
y (y − µy)

= 1 µg + Cg(Cg + Ce)−1(y − µg)
(1.22)

and covariance matrix

Cg|y = Cg − CgyC−1
y Cyg

= 1 Cg − Cg(Cg + Ce)−1Cg

= 2 (C−1
g + C−1

e )−1

(1.23)

If we collect a set of measurements y at certain locations {x1, x2, . . . } , (1.22)

would define the maximum likelihood estimate of the phenomena g and (1.23)

would define the uncertainty in this estimate. The computation of (1.22) and

(1.23) requires the knowledge of µg and Cg. Usually in this framework, the mean

µg is estimated from the data as a sample mean, and the covariance matrix Cg is

estimated using a symmetric positive definite kernel function K(., .), i.e. the ij-th

entry of Cg is K(xi, xj). Often it is assumed that the covariance between any

two locations is only a function of their distance. A widely used kernel function

is K(x1, x2) = exp
(

−‖x1−x2‖2

2

h2

)

, as in [4], where h is a scaling factor.

We consider the assumption of a specific covariance matrix (or kernel function)

in the Gaussian process framework to be equivalent to the assumption of a specific

model in the regression framework. Indeed, we can see that if we assume that

Cg = XT CaX, then we can relate Cg|y to CXTa|y of (1.16) as follows

Cg|y =
(

(XTCaX)−1 + C−1
e
)−1

= XT CaX − XT CaX(XTCaX + Ce)−1XTCaX

= XT Ca|yX

= C(XT a)|y .

(1.24)

1
Cgy = C

T

yg = Cg .
2Using the Sherman–Morrison–Woodbury formula.
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Both Cg|y and CXTa|y are covariance matrices of the estimated field given the

measurements y.
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CHAPTER 2

Related Work

The sensor placement problem has been considered by many people. We discuss

in this chapter the work done in [4]and [5].

The work in [4] is based on the Gaussian process framework to model the spa-

tial field. As we described above, in this framework a Gaussian random variable

is associated with the phenomenon at each location and for any set of locations

a Gaussian random vector is used to model the phenomenon at these locations.

Given measurements at certain locations, the field value at these locations can

be estimated by (1.22) with an error covariance matrix given by (1.23) which de-

pends on the covariance matrix of the Gaussian process. In [4], a pilot deployment

is used to collect data and estimate the covariance matrix of the Gaussian process

using a kernel function. To relate to our work in this thesis, our assumption of a

known regression model for the field in Chapter 3 is similar to assuming a known

covariance matrix for the Gaussian process. For this reason we do not need in

our work a pilot deployment and the placement we find in Chapter 3 is obtained

before any collection of data. Furthermore the sensor placement in [4] is found

by maximizing the mutual information between the locations, k, where data are

collected and the locations, u, where the process needs to be estimated. In our

work the philosophy would be to minimize the entropy of u given k. The entropy

is the measure of the uncertainty of u given k while the mutual information is

the measure of the reduction of uncertainty in u given k.
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The work in [5] considers the sensor placement for maximal coverage in the

design space without any knowledge about the model of the field. Mobile sensors

are used to travel and collect measurements at these placements. The travel time

is taken into consideration in finding the placements. In our work we assume

either the model of the field is known (Section 3.1), or the model is one of many

defined models (Section 3.2 and Chapter 4).
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CHAPTER 3

Experiment Design for Model Estimation

In this chapter we present sensor placement methods based on optimal experi-

ment design for model estimation. We assume that we are restricted to pick the

placements from a set of p plausible locations Z = {z1, . . . , zp}. We assume as

well that we want to collect m measurements. In any of the frameworks reviewed

above, we can randomly place sensors, collect m measurements and formulate

inferences like estimating the parameters of the regression model or estimating

the truth g in the Gaussian process framework. Here we ask and answer the

question of where to collect the data so that these inferences are done as well as

possible or more technically in an optimal fashion. In Section 3.1 we present the

basic experiment design problem for estimating a single model and in Section 3.2

we show how an optimal placement can be found to estimate multiple models.

3.1 Estimation of a Single Model

The error covariance matrices Cã, Ca|y and Cg|y given in (1.11), (1.16) and

(1.23) respectively, do not depend on the measurements y and depend only

on the design matrix X. The covariance matrix C reflects the accuracy of the

estimation– the smaller (in some sense) the matrix is, the better the estimation

accuracy will be.
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3.1.1 Sensor Placement in the Regression Framework

Here we show how the sensor placement problem can be formulated in the regres-

sion framework in a similar approach as in [3]. The experimental design problem

provides us guidance about how to choose from the set Z = {z1, . . . , zp} the lo-

cations xj that are maximally informative. The approach we take is to minimize

the matrix C in some sense.

Define mj (≥ 0) to be the number of measurements we collect at the location

zj and w to be the vector with j-th element wj = mj/m. Note that we might

collect multiple measurements at a single location if it is an especially informative

location. Since we want to collect m measurements, we get the following equation:

p
∑

i=1

mj = m −→ 1T w = 1

where 1 is the all-ones vector. The error covariance matrix in (1.11) can now be

written as

C =

(

p
∑

i=1

mjvjC
−1
e vT

j

)−1

=
1

m

(

Xdiag(w)C−1
e XT

)−1

where diag(w) is the diagonal matrix having w as its diagonal. Now we can write

the experiment design as an optimization problem as follows:

min
w

C

subject to
∑p

i=1 mj = m (3.1)

mj ≥ 0

mj is integer

14



This problem formulation results in an NP-complete problem because of the

integer constraint on mj. We can relax this integer constraint and get an approx-

imate design. To make things simpler and without loss of generality, we assume

that C−1
e = I. Since 1

m
is a constant we can drop it and the problem becomes

min
w

C =
(
∑p

i=1 wjzjz
T
j

)−1
=
(

Xdiag(w)XT
)−1

subject to 1T w = 1 (3.2)

w ≥ 0

The minimization (3.2) is a vector optimization problem over the space of positive

definite matrices. We will introduce a convex scalarization for the problem that

provides us with an ordering over this space. The most common scalarization is

to minimize the determinant of the error covariance matrix C. This is called the

D-optimal design. The problem now becomes a convex problem:

min
w

det
(

Xdiag(w)XT
)−1

subject to 1T w = 1 (3.3)

w ≥ 0

There are many other scalarizations (E − optimal, A − optimal, etc.) that min-

imize different convex functions of the error covariance matrix C. E − optimal

minimizes the norm of the error covariance matrix and A − optimal minimizes

the trace of the error covariance matrix. An elaborated discussion is presented

in [3]. We will focus on the D − optimal design since it can be interpreted as

minimizing the entropy of the estimation error as we see in Section 3.1.3.
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Figure 3.1: Comparison between Random Designs and D−optimal Designs. The

Random Design curve is the average of 1000 simulations.

The solution of (3.3), wi = mi/m, can be interpreted as the relative frequency

of choosing the location zi. The value wi · m can also be rounded to get integer

values for mi. We notice that this whole formulation does not use the data to

find the approximate optimal locations for the sensors. As we said before, it is

assuming that the model we choose to fit in (1.4) is the true model!

Why is this formulation useful? The problem (3.3) corresponds to finding the

placements to minimize the volume of the confidence ellipsoid in estimating the

regression parameters [3]. Here we present figure that shows the benefit in solving

the D − optimal sensor placement problem on the regression model estimation.

This benefit is in terms of the volume of the estimation confidence ellipsoid.

Indeed the volume of the confidence ellipsoid resulting from the D − optimal

locations is smaller than the one from random locations as shown in Figure 3.1.

Similarly we can formulate the sensor placement problem for the regression

16



framework with random parameter a ∼ N (0, Ca). The problem is

min
w

det
(

C−1
a + Xdiag(w)XT

)−1

subject to 1T w = 1 (3.4)

w ≥ 0

3.1.2 Optimal Sensor Placement in the Gaussian Process Framework

We can ask the question of optimal placement in the Gaussian process framework

in a similar manner as in the regression framework. The goal would be to select

the locations such that the covariance matrix Cg|y is as small (in some sense) as

possible. Using the the determinant scalarization we get the following problem

min
w

det(C−1
g + C−1

e )−1 (3.5)

subject to Constraints depending on Cg (3.6)

From the discussion at the end of Section 1.2.2, we see that if we assume that

Cg = XT CaX, (1.23) reduces to (3.4). The constraints in (3.6) reduce as well

to the constraints in (3.3) of the regression framework. This relates the sensor

placement problems in both frameworks.
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3.1.3 Interpretation in terms of Entropies

One could think of (3.6) as an entropy minimization problem. In fact the entropy

of fg|y(g|y) is given by

h(g|y) = 1
2
log
(

(2πe)n det(Cg|y)
)

= 1
2
n (1 + log(2π)) + 1

2
log det(Cg|y)

(3.7)

We can see that minimizing h(g|y) leads to (3.6). This explains what we

said in Chapter 2 about the relationship between this work and [4]. We use an

entropy minimization approach while [4] uses a mutual information maximization

approach.

3.2 Estimation of Multiple Models

In this section we are trying to find designs which are ′good′ for multiple models.

This situation arises, for example, when we are deploying nodes that have multiple

sensor modalities (e.g. temperature, light, humidity, etc). In this situation, we

are dealing with different modalities, each of which has a different model. So the

goal of the experiment design is to find locations that result in high accuracy

in estimating multiple fields together. This situation arises as well when we are

estimating one field with an uncertain model i.e. the field model could be one of

multiple models. For example, we want to estimate a temperature field but we

are uncertain if we should assume that the field model is a first or a second order

polynomial. So the goal is to find locations that result in an estimation robust

to the model assumption. We focused as above on polynomial models. We will

illustrate the approach in the following example of estimating multiple fields 1:

1We can use the same discussion below to the case of a single field with multiple possible

models.
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Assume that we have nodes that have two sensing modalities, a temperature

sensor and a light sensor. Assume further that the temperature field is a first

order polynomial model and the light field is a second order polynomial model:

ti = a0 + a1xi + ei, i = 1, . . . , m −→ t = XT
t a + e

li = b0 + b1xi + b2x
2
i + ei, i = 1, . . . , m −→ l = XT

l
b + e

(3.8)

where t refers to temperature and l refers to light. Xt is the design matrix corre-

sponding to a first order polynomial, and Xl is the design matrix corresponding

to a second order polynomial. Note that the example can be easily interpreted

as uncertain model assumptions for a single field.

We present two formulations for this problem. The first one minimizes the

mean of the estimation errors of the different fields (or models) while the second

one minimizes the estimation errors of some fields (or models) with a constraint

on the accuracy of estimation of the other fields (or models). We will focus on the

example above of two fields but the approach can be easily extended to multiple

fields.

3.2.1 Using the Mean

We sought good designs by simply minimizing the mean of the estimation errors

corresponding to the two different models. The first approach is to use the

arithmetic mean and solve

min
w

(

det
(

Xtdiag(w)XT
t

)−1

+ det
(

Xldiag(w)XT

l

)−1
)

subject to 1T w = 1 (3.9)

w ≥ 0
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Which is a convex problem since the utility function is the addition of two convex

functions and the constraints are linear. In case we have more than two fields,

we would need to add the utility functions corresponding to the multiple fields.

The second approach is to use the geometric mean and solve

min
w

(

det
(

Xtdiag(w)XT
t

)−1

· det
(

Xldiag(w)XT

l

)−1
)

subject to 1T w = 1 (3.10)

w ≥ 0

which is also a convex problem. In case of multiple fields, we would need to

multiply the utility functions corresponding to the multiple fields.

The solution of (3.10) or (3.11) provides good estimation of both the temper-

ature and the light fields. It performs better than the optimal solution assuming

the temperature field model in estimating the light field, and it performs better

than the optimal solution assuming the light field model in estimating the tem-

perature field. An investigation of the benefits of one approach versus the other

is not done here but it is planned as a future work.

3.2.2 Using Constraints

In this section we find designs that minimize the estimation error of one model

while ensuring a certain accuracy in the estimation of the other model. This

formulation is based on (3.3) with an additional constraint that the resulting

estimation error of the second model is less than a specified value. The problem
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becomes

min
w

(

det
(

Xtdiag(w)XT
t

)−1
)

subject to det
(

Xldiag(w)XT

l

)−1

≤ f (3.11)

1T w = 1

w ≥ 0

which is a convex problem. As above, in this formulation the solution provides

good estimation of both the temperature and the light fields. The estimation

error of the temperature field is minimized and the estimation error of the light

field is below a user-defined value.

The benefits of these three approaches are that they ensure good estimation

accuracy of multiple fields (or models). This will help in the design of node

placements in case of multiple fields or uncertain model assumptions. In the

example of a single field with multiple possible model assumptions, these ap-

proaches present a limitation that they do not scale with increasing the number

of possible model assumptions. In the example of multiple fields, the limitation

above is not present since a small finite number of modalities is usually present

on the sensor node. But another drawback is present; these three formulations

assume implicitly that the different modality fields are independent while usually

the environmental fields are correlated and we can benefit from the correlations.
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CHAPTER 4

Experimental Design for Discrimination

between Models

In Chapter 3 we used D − optimal experiment design to find the locations, from

a set of locations Z, where we should collect measurements for optimizing the

spatial field estimation by a linear regression model. As mentioned above, it

was assumed that the model structure, the polynomial order in our example, is

known. In this chapter we add some uncertainty to the problem. We look at the

situation when the field is one of multiple regression models and we want to design

a strategy to determine which of the models is true. A common method is to

randomly place sensors, collect measurements, perform a likelihood test and pick

the model that has the maximum likelihood given the measurements collected.

But we can find strategies for placements and data collection to optimize the

likelihood test. This falls into the fundamental experimental procedure where

one has a prior set of plausible models for the field and resorts to guided data

collection to pick the model, from the set, that best describes the field. It turns

out that the data collection should be done in iterations with the estimation of

the parameters of the regression models. In Section (4.1) we present the case of

two plausible models and in Section (4.2) we present the case of multiple models.
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4.1 Discrimination between Two Models

In this section we show how to find the optimal sensor placements for discrim-

inating between two competing regression models. The regression models have

known structure but unknown parameters. We do the following in this order:

we derive the likelihood test then we formulate the sensor placement problem

for optimizing the likelihood test and finally we present the algorithm of [1] that

solves the optimization problem.

The two competing linear regression models are:

h1(x, a) = XT
1 a

h2(x, b) = XT
2 b.

(4.1)

where X1 and X2 are the corresponding design matrices.

If m measurements are collected at locations z1, . . . , zm then

y = h(z) + e, (4.2)

where the phenomenon h(z) is a binary random variable and e ∼ N (0, Ce) is the

measurement noise. Assume that we believe that h(z) is h1(z) with probability

α1 and h2(z, a) with probability α2. We shall assume, without loss of generality,

that C−1
e = I.

The parameters a and b are estimated, as in (1.10), by

â = (X1C
−1
e XT

1 )−1C−1
e X1y (4.3)

b̂ = (X2C
−1
e XT

2 )−1C−1
e X2y. (4.4)

The likelihood test is to compare the likelihoods of h1 and h2, Ph|yh1|y and

Ph|y(h2|y) respectively, and pick the one with the largest value. Using Bayes’

23



theorem

Ph|y(h1|y) =
fy|h(y|h1)Ph(h1)

fy(y)
=

α1fy|h(y|h1)

fy(y)
(4.5)

Ph|y(h2|y) =
fy|h(y|h2)Ph(h2)

fy(y)
=

α2fy|h(y|h2)

fy(y)
(4.6)

So the likelihood test reduces to comparing α1fy|h(y|h1) and α2fy|h(y|h2). The

log-likelihood test is

max
i

log(αi) + log
(

fy|h(y|hi)
)

(4.7)

where fy|h(y|hi) ∼ N (hi, I). This is a binary hypothesis testing problem and

the probability of error, P e, in selecting the model is

P e = Q





√

‖h1(x, â) − h2(x, b̂‖2
2

2σ



 (4.8)

where Q(x) =
∫∞

x
1√
(2π)

exp
(

− s2

2

)

To optimize the discrimination we choose to minimize the probability of error

(4.8). Since the function Q is strictly decreasing we find the sensor placement by

maximizing the argument of Q(.) in (4.8). Using the vector w as in 3.3, we get

the following problem

max
w

‖diag(w)
(

h1(x, â) − h2(x, b̂)
)

‖2
2

where â = arg mina ‖diag(w) (y − h1(x, a)) ‖2
2 (4.9)

b̂ = arg minb ‖diag(w) (y − h2(x, b)) ‖2
2

This problem (4.9) was proposed by [1] and the solution ŵ was called T −optimal

design. As mentioned above the derivation of (4.9) here is more detailed and

follows a slightly different approach than the one followed in [1].
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We see from (4.9) that we need to know â and b̂ to find the weights ŵ and

we need to know ŵ to estimate â and b̂, i.e. on the one hand we need to know

the parameters of the models to find the optimal sensor placement and on the

other hand we need to collect measurements at certain locations to estimate the

parameters of the models. The solution ŵ of (4.9) was also given in [1] by the

following sequential algorithm

1. Given a design w(j) and a number of measurements N find:

âj = arg mina ‖
(

yj − h1(x, a)
)

‖2
2

b̂j = arg minb ‖
(

yj − h2(x, b)
)

‖2
2

2. Add to the design the location zj+1 such that:

zj+1 = arg maxz∈Z

(

h1(z, âj) − h2(z, b̂j)
)2

3. Make a measurement s at zj+1 and update

w(j + 1) = (1 − 1
N+1

)w(j) + 1
N+1

δ(zj+1)

4. Go back to 1

where δ(zj+1) is a vector with all entries equal to zero except the entry cor-

responding to zj+1 is equal to 1. In each iteration the algorithm estimates the

parameters, â and b̂, from the available measurements, picks the point that maxi-

mizes the difference between the models, makes a measurement there and updates

the weights associated with locations by adding 1
N+1

weight to the point selected

and rescaling so that the weights add up to 1. Details on the convergence of

the algorithm to the solution of (4.9) are available in [1]. Finally, given the

measurements collected, a likelihood test is used to select the model.
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Next we show a simulation we did on a 2-dimensional field. We used the

following model to generate data:

yi = 2 + 3xi + 0.4vi + ei, i = 1, . . . , m −→ y = XT a + e (4.10)

where e ∼ N (0, I). We used the algorithm to discriminate between the following

models

h1(xi, vi) = a0 + a1xi + a2vi, i = 1, . . . , m −→ h1(x, v, a) = XT
1 a

h2(xi, vi) = b0 + b1x
2
i + b2v

2
i , i = 1, . . . , m −→ h2(x, v, b) = XT

2 b.
(4.11)

We choose a set Z with 15 locations as shown in Figure 4.1. Figure 4.1 shows

7 locations selected after 8 iterations, and the likelihood ratio is 4.04. Figure

4.2 shows also 7 locations selected after 8000 iterations, and the likelihood ratio

is 14.85. This shows that the algorithm converges well in finding the optimal

locations since they were found after 8 iterations and the only change was in the

weights of the locations. The weight, mi/m, reflect the fraction of of measure-

ments that should be collected at the location zi.

In the case where the two models are nested, for example

h1(xi, vi) = a0 + a1xi + a2vi, i = 1, . . . , m −→ h1(x, v, a) = XT
1 a

h2(xi, vi) = b0 + b1xi + b2vi + b3x
2
i + b4v

2
i , i = 1, . . . , m −→ h2(x, v, b) = XT

2 b,

(4.12)

the space of the second model includes the space of the first model. The likelihood

of the second model will be, for any design, greater or equal to the likelihood of

the first one. So in this case one would be interested in the structure of the model

and would add the constraint b2
3 + b2

4 ≥ 1 to step 1 of the algorithm [1].
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Figure 4.1: Selected Locations for Discrimination between the models. 7 Loca-

tions were selected in 8 Iterations
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Figure 4.2: Selected Locations for Discrimination between the models. 7 Loca-

tions were selected in 8000 Iterations
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4.2 Discrimination between Multiple Models

In this section, we show how to extend the work in Section 4.1 to finding a

strategy for sensor placements and data collection for discriminating between

several competing regression models. As above, the regression models have known

structure but unknown parameters. We follow a similar reasoning as above where

the strategy is found to minimize the probability of error in selecting the correct

model. The probability of error is dominated by the comparison between the

likelihood of the true model and the likelihood of the closest model to it. The

algorithm is similar to the case of two models. But after step 1, a ranking of the

models by goodness of fit is done and then in step 2 we pick the location that

maximizes the discrimination between the two best models. Assume we want to

discriminate between k models h1(z) . . . hk(z). The measurements are modeled

as follows

y = h(z) + e, (4.13)

where h(z) is one of the models.

The likelihood test is the same as (4.7) where i belongs to {1 . . . k}. The

log-likelihood of the i-th model is given by

Li = −‖ (y − hi(x, a)) ‖2
2 (4.14)

The algorithm becomes

1. Given a design w(j) and a number of measurements N , for each model hk(x, a)

find:

âkj
= arg mina ‖ (yj − h1(x, a)) ‖2

2

Rank the models by the goodness of fit, for example Lu > Lv > ... > Lw
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2. Add to the design the location zj+1 such that:

zj+1 = arg maxz∈Z

(

hu(z, âj) − hv(z, b̂j)
)2

3. Make a measurement s at zj+1 and update

w(j + 1) = (1 − 1
N+1

)w(j) + 1
N+1

δ(zj+1)

4. Go back to 1

Next we show a simulation we did on a 2-dimensional field. We used the

model in (4.10) to generate the data. We used the algorithm to discriminate

between the following models

h1(xi, vi) = a0 + a1xi + a2vi, i = 1, . . . , m −→ h1(x, v, a) = XT
1 a

h2(xi, vi) = b0 + b1x
2
i + b2v

2
i , i = 1, . . . , m −→ h2(x, v, b) = XT

2 b

h3(xi, vi) = c0 + c1x
3
i + c2v

3
i , i = 1, . . . , m −→ h3(x, v, b) = XT

3 c.

(4.15)

We chose a set Z of 15 locations as shown in Figure 4.3. Figure 4.3 shows that

8 locations are selected after 8 iterations and the likelihoods are: L1 = 0.7627,

L2 = 0.0319 and L3 = 2.4e−4. Figure 4.4 shows that 11 locations were selected

after 8000 iterations and the likelihoods are:L1 = 0.9360, L2 = 0.0307 and L3 =

2.5e−5. We see here that after 8000 iterations more locations were selected and

that the discrimination was only slightly improved.
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Figure 4.3: Selected Locations for Discrimination between three models. 8 Loca-

tions were selected in 8 Iterations
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Figure 4.4: Selected Locations for Discrimination between three models. 11
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CHAPTER 5

Conclusions and Future Work

In this thesis we described methods for sensor placement and data collection

strategies in linear environmental fields for two purposes; the first is estimation

of the field and the second is model selection from a set of models. The methods

are based on optimal experimental design techniques. For the first problem,

Chapter 3, we showed how to find sensor placement to minimize the error in

estimating the field using D − optimal designs. We presented the connection

between the regression framework and the Gaussian process framework. The

Gaussian process framework reduces to the regression framework if we assume

that the Gaussian process has mean XTµa and covariance matrix XT CaX. The

sensor placement problem for estimating the process then becomes equivalent

to the sensor placement problem for estimating the regression parameters. We

showed as well that the problem of D − optimal sensor placement for estimating

the field can be interpreted as a minimization of the entropy of the field given the

measurements. We presented in simulations the benefit of the experimental design

techniques over random placement in reducing the uncertainty in estimating the

field model. We presented as well three formulations for optimal sensor placement

to estimate multiple fields together. The first formulation is to find the sensor

placements which produce the minimum arithmetic mean of the estimation errors

of the multiple fields, the second is to find the sensor placements which produce

the minimum geometric mean of the estimation errors of the multiple fields, and
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the third formulation is to find the sensor placements which produce the minimum

mean of the estimation errors of some of the considered fields while ensuring that

the estimation errors of the other fields is below some specified value. For the

second problem, Chapter 4, we showed how to find sensor placements and data

collection strategies for selecting a field model from a finite set of models based on

T −Designs of [1] and [2]. We presented a formulation of the problem based on

minimization of the probability of error in selecting the field model. The strategy

of sensor placement and data collection is sequential.

Many topics for future work can be suggested. We are interested in the

following ones. The work of Section 3.2 on estimating multiple modality fields

could be extended to incorporate the correlation between the estimated fields. As

mentioned above, the formulation presented assumes that the fields corresponding

for the different modalities are independent. We expect that incorporating the

correlation between the fields will result in a better accuracy in the estimation.

Another extension would be to take the work of Section 3.2 on robust estimation

of a single field under uncertainty in the structure of the field model and generalize

it to uncertainty over a class of models. The work presented in this thesis shows

the formulation of the sensor placement problem for robust estimation of the

field when the field model belongs to a finite set of models. We are interested in

finding sensor placements robust to a class of models, e.g. the class of polynomial

models. A similar extension could be made for the work of Chapter 4 to classes

of models rather than a finite set of models. Extension of the work of Chapter

4 to different model selection criteria is also interesting. The work presented in

this thesis is based on minimizing the probability of error in the selection and

assumes that one of the competing models is the correct model. We are interested

in the situation when the set of models considered does not include the correct

model, and we want to find the closest model to the true one. This situation is
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interesting because often the correct field model is not known in advance.

We hope that the methods and discussions presented in this thesis provide

a step toward more rigorous strategies of sensor node placements and data col-

lection for reducing the uncertainty and the a priori assumptions in modeling

environmental spatial fields.
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